UNCLASSIFIED

AD NUMBER

AD865728

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Dec 1969.
Other requests shall be referred to Air
Force Materials Lab., Attn: MAMC,
Wright-Patterson AFB, OH 45433.

AUTHORITY

AFML 1ltr, 29 Mar 1972

THIS PAGE IS UNCLASSIFIED




B NN

MRl SR g

AD 865728

| AFML-TR-69-84
! PART IV -~ VOLUME 1

STABILITY CHARACTERIZATION OF
REFRACTORY MATERIALS UNDER HIGH
VELOCITY ATMOSPHERIC FLIGHT CONDITIONS

PART IV —VOLUME I: 'I‘HEORETICAL CORRELATION OF
© MATERIAL PERFORMANCE WITH STREAM CONDITIONS

LARRY KAUFMAN, HARVEY NESOR, HAROLD BERNSTEIN
and JUDSON R. BARON
ManLabs, Inc.

TECHNICAL REPORT AFML-TR-86-84, PART IV, VOLUME I

DD c

0 [P0 ngp
NAR 10 1979 |

LG ITATS
~NR

This document is subject to special export controls and each transmittal

to foreign governments or foreign nationals may be made only with prior

approval of the Air Force Materials Laboratory (MAMC), Wright-
Patterson Air Force Base, Ohio 45433

DECEMBER 1960

AIR FORCE MATERIALS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

AT SN

W oa a.  Aaea - -




-y -

—— -

i

Al .

NOTICE

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely related
Government procurement operation, the United States Government
tharahw incure no rasponsihilite nor any shligotica Whailsvoves, and ine
fa~t that the government may have formulated, furnished, or in any
w , supplied the said drawings, specifications, or other data, is not

" rvegarded by implication or otherwise as in any manner licensing

\der or any other person or corporation, or conveying any rights

~ aission to manufacture, use, or se¢ll any patented invention that
any way be related thereto,

This document is subject to special export controls and each
‘tr. _.aittal to foreign governments or foreign nationals may be made
only with prior approval of the Air Force Materials Laboratory (MAMC),
Wright-Patterson Air Force Base, Ohio 45433,

Distribution of this report is limited for the protection of
technology relating to critical materials restricted by the Export Control
Act.

PP

WHITE 3EION

LY LY AT PP R———

ol

91,2 Won/AMUABILITY Cold
VST AR, et/ sPealie]

201

Copies of this report should not be returned unless return is
required by security considerations, contractual obligations, or notice
on a specific document.

700 - January 1970 ~ CO455 = 106-2361

-

N

—e e e e amm R a m. Leena e .




.. = 7 T T

B T e et

R S T

TS

o m—— e

.
STABILITY CHARACTERIZATION OF

REFRACTORY MATERIALS UNDER HIGH
VELOCITY ATMOSPHERIC FLIGHT CONDITIONS

PART IV —VOLUME I: THEORETICAL CORRELATION OF
MATERIAL PERFORMANCE WITH STREAM CONDITIONS

LARRY KAUFMAN
HARVEY NESOR
HAROLD BERNSTEIN
JUDSON R. BARON

This document is subject to special export controls and each transmittal
to foreign goveruments or foreign aationals may be made only with prior
approval of the Air Force Materials Laboratory (MAMC), Wright-
Patterson Air Force Base, Ohio 45433.

S—




B e U —

etz

FOREWORD

This report was prepared by ManLabs, Inc. under Project (314,
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Surface Protection,' and Project 7350, "Refractory Inorganic Nonmetal-
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metallic Materials: Nongraphitic," and 735002, '"Refractory Inorganic
Nonmetallic Materials: Graphitic," under AF33(615)-3859 and was
administered by the Metals and Ceramics Divisions of the Air Force
Materials Laboratory, Air Force Systems Command, with J.D. Latva,

J. Krochmal, and N,M,. Geyer acting as project engineers.
This report covers the period from April 1966 to July 1969,

ManLabs' personnel participating in this study included L. Kaufman,
H. Nesor, H, Bernstein, J.R. Baron and G, Stepalkoff,

the authors in
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ABSTRACT

The oxidation of refractory borides, graphites and JT composites,
bypereutectic carbide-graphite composites, refractory metals, coated
ioiiaciviy susials, meiai-uxide cumposiies, and iridium coated graphites
in air haa heen studicd under high velocity atmospheric flight conditions.
Elucidation of the relationship between hot gas/cold wall (HG/CW) and cold
gas/hot wall (CG/HW) surface effects in terms of heat and mass transfer
rates at high temperatures was a principal goal.

Published arc plasma test data for refractory materials taken in eight
different facilities were collected and examined by comparing the observed
surface temperature with calculated radiation equilibriwn values, Wide
variations in the ratio of calculated to observed temperature were encountered.
Similar calculations performed for tests conducted in the present program
yiclded results close to unity especially when melting is encountered. Larger
ratios (up to 1.5) were noted for specific materials which produce silicon
oxides, implying enhanced resistance to energy absorbtion, Thus, an alter-
native method of presentation which compares recession rate as a function of
heat flux and enthalpy for the candidate materials was developed, This des-
cription provides a means for comparing performance for various trajectories
by applying a flux/enthalpy-altitude/velocity translation in considering candi-
date materials. Comparison of the trajectory of the FDL-7MC lifting reentry
vehicle (Lift/Drag ratio between 2.5 and 3.0 and a 3'"' nose radius) eliminates
all of the candidate materials except the boride composites, These composites
have survived multicycle exposures totaling 20,000 seconds under conditions
simulating the most severe portions of the FDL-7MC trajectory.

Calculations of the flux-enthalpy boundaries for recession rates of 1
mil/sec based on melting of the golid oxide forming materials are found to
compare reasonably with observations. The model employed for these cal-
culations is based on providing the latent heat required for melting at a rate
of 1 mil/sec.

Calculation of the surface temperature based on stream and material proper-
ties is presented to predict internal temperature gradients for comparison with
the "in-depth" measurements. Temperature gradients along the axis of a right
circular cylinder which is heated from one end in an arc plasma test with front
face and side radiation losses are considered. The effects of radius, length,
thermophysical properties and an oxide film on the front face are included.
Measurement of temperature gradients through oxide films formed during arc
plasma exposures indicate substantial gradients (1000°R through 100 mils) can
exist, Comparison of the measurements with computed results yield good
agreement in view of the simple models employed. Explicit models are
presented for computing the rate of graphite recession in air as a function of
density, surface temperature, gas velocity, stagnation pressure and sample
radius. The results are compared with observations covering a wide range of
conditions.

This abstract is subject to special export controls, and each trans-

mittal to foreign governments or foreign nationals may be made only
with prior approval of the Air Force Materials Laboratory (MAMC),
Wright-Patterson Air Force Base, Ohio 45433,
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I, INTRODUCTION AND SUMMARY

A. Introduction

The response of refractory materials to high temperature
oxidizing conditions imposed by furnace heating has haen chooxvcd tc
difier markedly from the behavior in arc plasma "reentry simulators,'
The former evaluaiions are normally performed for long times at fixed
temperatures and slow gas flows with well-defined solid/gas-reactant/
product chemistry., The latter on the other hand are usually carried out
under high velocity gas flow conditions in which the energy flux rather
than the temperature is defined and significant shear forces can be en-
countered, Consequently, the differences in philosophy, cbservables,
and techniques used in the ""material centered" regime and the ''environ-
ment centered, reentry simulation" area differ so significantly as to
render correlation of material responses at high and low speeds difficult
if not impossible in many cases. Under these circumstances, expeditious
utilization of the vast background of information available in either area
for optimum matching of existing material systems with specific missions
or prediction and synthesis of advanced material systems to meet require-
ments of projected missions is sharply curtailed.

In order to progress toward the elimination of this gap, an
integrated study of the response of refractory materials to oxidation in
air over a wide range of time, gas velocity, temperature and pressure
has been designed and implemented, This interdisciplinary study spans
the heat flux and boundary -layer-shear spectrum of conditions encountered
during high-velocity atmospheric flight as well as conditions normally em -
ployed in conventional materials centered investigations, In this context,
significant efforts have been directed toward elucidating the relationship
between hot gas/cold wall HG/CW and cold gas/hot wall CG/HW surface
effects in terms of heat and mass transfer rates at high temperatures, so
that full utilization of both types of experimental data can be made. The
elucidation of various mass transfer reaction regimes have been studies in
gaseous and solid oxide formation,

The principal goal of this study is the coupling of the material-
centered and environment-centered philosophies in order to gain a better in-
sight into systems behavior under high-speed atmospheric flight conditions,
This coupling function has been provided by an interdisciplinary panel com-
posed of scientists representing the component philosophies, The coupling
framework consists of an intimate mixture of theoretical and experimental
studies specifically designed to overlap temperature/energy and pressure/
velocity conditions. This overlap has provided a means for the svaluation
of test techniques and the performance of specific materials systems under
a wide range of flight conditions. In addition, it provides a base for develop-
ing an integrated theory or modus operandi capable of translating reentry
systems requirements such as velocity, altitude, configuration, and life
time into requisite materials properties as vaporization rates, oxidation
kinetics, density, etc., over a wide range of conditions,
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The correlation of heat flux, stagnation enthalpy, Mach No.,
stagnation pressure, and specimen geometry with surface temperature
through the utilization of thermodynamic, thermal and radiational proper-
ties of the material and environmental systems used in this study was of
prime importance in defining the conditions for overlap between materials-

centared and environmant-cantarad tasts

Significant practical as well as fundamental progress along the
above mentivned lines necessiiated evaluation of refractory material systems
which exhibit varying gradations of stabjlity above 2700°F. Emphasis was
placed on candidates for 3400 F to 6000 F exploitation. Thus, borides,
carbides, boride-graphite composites (JTA), JT composites, carbide-
graphite composites, pyrolytic and bulk graphite, PT graphite, coated
refractory metals/alloys, oxide-metal composites, oxidation-resistant
refractory metal alloys, and coated graphites were considered. Similarly,

a range of test facilities and techniques including oxygen pickup measure-
ments, cold sample hot gas, and hot sample cold gas devices at low velocities
as well as different arc plasma facilities capable of covering the 50-2500
BTU/ft2gec flux range under conditions equivalent to speeds up to Mach 12

at altitudes up to 200,000 ft were employed. Stagnation pressures covered
the range between 0,001 and 10 atmospheres.. Splash and pipe tests were
performed in order to evaluate the effects of aerodynamic shear. Based on
the present results, this range of hgat flux and stagnation enthalpy produced
surface temperatures between 2000°F and 6500°F, :

B. Summary

The present report, which is the seventh in a series (1-6)*, “‘deals
with theoretical methods for correlating the performance of the candidate
refractory materials with stream conditions. In many respects, this correla-
tion constitutes the essence of the entire study. Thus, given stream character-
istics such as stagnation enthalpy, stagnation pressure and cold wall heat flux,
ig it possible to provide a means for predicting the response of a candidate
material upon insertion into this stream? The development of such methods
would be of twofold value to the current program. Operationally it would
provide a means for checking the internal consistency of arc plasma tests,
Thus, measurements of arc plasma stream conditions could be employed to
compute the surface temperature achieved by candidate materials during
exposure for comparison with observed surface temperature. In addition, since
the behavior of these materials is strongly dependent on the surface -
temperature (or temperature regime) the foregoing correlation could provide
a means of describing the materials performance in terms of flight character-
istics. This translation could be affected by employing the relations between
altitude, velocity and body radius on the one hand and enthalpy, pressure and
heat flux on the other. In this way, a logical method for comparing the require-
ments of specific flight trajectories with the capabilities of refractory materials
could be developed.

Accordingly, activities aimed at generating such methods were
carried out during the course of the program, At the outset, a literature
survey of published arc plasma test data for refractory materials was per-
formed. Data taken in eight different facilities were collected and examined

Underscored numbers in parentheses indicate references given at the end
of this report.
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by comparing the observed surface temperature with values calculated on
the basis of radiation equilibrium, Rather wide variations in the ratio of
calculated to observed temperature, T{CALC)/T{OBS) were encouniered,

In most "ustances this ratio was greater than unity and in some instances
{exposures performed in a given facility) the ratio T(CALC)/T(OBS) re-
sulted in values near 2.0, Similar calculatisn: o21g porivrmed tor all of
ine arc plasma tests conducted in the present program {6). In these cases
{nearly 800 in total) the ratio T(CALC)/T(OBS) was reasonably close to
unity. In particular the pregent rzsulis indicate that values near unity

are observed when melting is encountered. Larger ratios {up to 1.5) were
noted for specific materials which produce silicon oxides such as HfB,+
5iC(A-4), KT-SiC{E-14), and WSi2/ W (G-18) and for Sn-Al/Ta-10W(G-19). At
low temperatures (i.e., 3000°R-3500"R) these materials exhibit T(CALC)/
T{OBS) ratios near 1.5 providing that melting does not occur. The occur-
rence of ratios which are larger than unity implies enhanced temperature
capability due to resistance to energy absorbtion by the material. Although
the origin of this resistance is not clear at present, it is probably due to
blocking effects caused by evolution of gaseous oxides. These observations
suggest a method of ranking the behavior of the refractory materials which
differs from the customary recession vs. temperature curves. Thus, an
alternative method of presentalion which compares recession rate as a
function of heat flux and enthalpy for the candidate materials was developed.
This method does not require a knowledge of the spectral or the normal emit-
tance and integrates the blocking effects characteristic of each material,

In the course of the present study, the oxidation of graphites in
air has been investigated experimentally over a range of conditions (4-6)
between 2500°R and 6500°R, at velocities between 1 ft/sec and Mach 3.2,
The succeeding volume of this series presents a complete discussion of the
surface reaction problem encountered in the oxidation of graphite. This
discussion considers the coupling of mass transport through the boundary
layer with reactions at the surface in detail. By contrast, the discussion
presented here employs simplified models which provide an explicit means
for computing the rate of graphite recession in air as a function of density,
surface temperature, gas velocity, stagnation pressure and sample radius.
The results are compared with observations covering a range of density
between 80 and 115 Ibs/ft3, temperatures between 2500° and 6500°R,
velocities between 1 ft/sec and Mach 8,0, stagnation pressures between 0. 007
and 1,0 atm and nosge radii between 0.005 and 0, 07 ft. The current descrip-
tion is based on the product of Arrhenius' term and an oxygen partial pres-
sure texm. The former consists of a pre-exponential of 0. 74 lbs/ft®sec and
an activation energy of 10, 730 cal/mole. The oxygen partial pressure term
has an exponent of 0,333 and is modified by an explicit correction factor
which relates the oxygen concentration at the reacting surface to the oxygen
concentration at the edge of the boundary layer, This correction factor is
specified in terms of Mach No., body radius and pressure.

A method for describing the response of refractory materials to
the enthalpy and heat flux characteristics of the stream has been developed.
This description provides a means for comparing material performance at
the stagnation point for various trajectories. The comparison can be made

F,




by translating the flux-enthalpy description into altitude-velocity character-
istics based on established relations between stagnation pressure, altitude
and velocity, The Fay-Riddell relation is employed to specify heat flux in
terms of altitude, velocity and body radius. The material ranking afforded
by this description shows that HfB2+SiC(A-4) possesses the widest range of
applicatility of all the candidate materials investigated in the present study.
In addition. the diffarant modeos of Bohavios calubiied Dy ablators (such as
graphite and tungsten) and solid oxide formers are clearly dispiayed.

The applicability of the flux/ enthalpy-altitude/velocity descrip-

tion in considering candidate materials has been illustrated by comparing

the trajectory of the FDL-7MC lifting reentry vehicle with the behavior of
candidate refractory materials, This vehicle is designed for a Lift/Urag
ratio between 2,5 and 3.0. The conditions imposed by this trajectory for

the case of a 3" nose radius eliminate all of the candidate materials except
the boride composites. These composites have survived multicycle expo-
sures totaling 20,000 seconds under conditions simulating the most severe
portions of the FDL-7MC trajectory (6).

Calculations of the flux-enthalpy boundaries for recession rates
of 1 mil/sec based on melting of the solid oxide forming materials are found
to compare reasonably with observations, The model ernployed for these
calculations is based on providing the latent heat required for melting at a
rate of 1 mil/sec,

Measurement of temperature gradients which exist through
oxide films forlarmd during arc plasma expssures indicate substantial
gradients (1000° R through 100 mils) can exist (6).

A first order calculation of the surface temperature as a function
of stream conditions and material properties is presented in order to pro-
vide a means for predicting internal temperature gradients for comparison
with the "in depth" measurements, This calculation considers temperature
gradients along the axis of a right circular cylinder which is heated from one
end in an arc plasma test, Front face and side radiation losses are con-
sidered in describing the effects of radius, length and thermophysical pro-
perties on the surface temperature and internal gradients. In addition, the
effect of an oxide film on the front face was included. The calculations in-
dicate that small gradients occur when the surface temperature is low, or
when the cylinder length and/or the length/radius ratio is small, Large values
of the thermal conductivity of the cylinder material also leads to small gra-
dients. Large values of surface temperature, length/ radius ratio and small
values of the thermal conductivity of the oxide and base material resultin large
gradients.

The model has been applied to calculation of temperature gra-
dients for comparison with the experimental results obtained in sixty-five
arc plasma tests on a variety of refractory materials., Ablutors and oxide
forming materials covering a wide range of thermophysical and oxidation
characteristics, such as ZrB»+5iC(A-~8), ZrB3(A-3), Hi{B2+5iC(A-7), RVA
(B-5), ZrB+SiC+C(A-10), WSi2/W(G-18) and Hf-Ta-Mo(I-23) were included.
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Observables consisted of the measured front face temperature T,, the ¢b-
served temperature at a distance, d mils from the front face, T(fd), the
cold wall heat flux, q, the stagnation enthalpy, i, and the stagnation pres-
sure P,. Additional input corsisted of sample radius, R, length, L, and
oxide coating thickness, 1. The latter was equated to the conversion depth
for the oxide formers (6). For WSiZ/W, 1 was equated to the WSij; coat-

ing thickness with I=0 for RVA(B-5) graphite which ablates without coating
formation. Suitable values of the emittance, ¢g, and the thermal conductiv-
ities of the coating, kg, and the substrate, kg, Were also employed.

4 A20 SJada

calculated front face temperature to observed front face temperature
Tf(CALC)/Tf(OBS) and the ratio of computed in-depth temperature T4(CALC)
to computed front face temperature Tf{CALC). The latter is compared with
the ratio of observed in-depth temperature T 43(OBS) to observed front face
temperature T{{OBS). If agreement between calculated and observed
temperatures results, T CALC)/TAOBS) would equal unity and the ratios
TalCALC)/Tf(CALC) an Td(OBS)/’f'f(OBS) would coincide. Relatively good
agreement was encountered as regards the latter comparison in view of the
simple model employed to describe the complex tests. In addition,
T¢(CALC)/T¢OBS) ratios were computed near unity for many of these tests.
However, in line with the behavior noted above some systematic deviations
were observed.

The computed results are digplayed in terms of the ratio of

The largest of these occurred at low surface temperatures
(i.e., Ts< 3300°R) for the materials which form SiOj as an oxidation
product. Thus, in cases where samples of Hf{B2+SiC(A-T), ZrB2+5iC(A-8),
ZrB2+SiC+C(A-10) or WSi2/W(G-18) were exposed with shrouds or as large
diameter hemispheres, Tg{(CALC) is considerably larger than T¢{CBS). How-

ever, this difference is smaller than obtained when Tf is computed on the basis

of front face radiation equilibrium alone. The cause of this behavior is
presently unknown.
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I, THE THERMAL RESPONSE OF REFRACTORY MATERIALS TO
HOT GAS/COLD WALL EXPOSURES

A, Introduction

Prior to launching the extensive HG/CW testing program con-
ducted under the presen: wavestigation, published data on the surface
temperature of borides, graphites, graphite composites, silicon carbide,
boron nitride, tungsten alloys and composites. refractory metal-oxide
composites,coated refractory mectals and iridium coated graphite ex-
posed in arc plasma and Wave Superheater tests were collected. These
data covered exposure conditions over a range of stagnation pressures
between(. 002 and 70 atmospheres while Mach Numbers, stagnation
enthalpy and heat flux levels ran from 0.2 to 8.5, 1400 to 18,000 BTU/Ib
and 20 to 4080 BTU/ft2sec, respectively. The specimen configurations
tested included flat face cylinders and hemispherical caps with diameters
between 0.25 and 3,00 inches. The facilities at which these exposures
were performed included Avco/SSD, Cornell Aeronautical Laboratory,
General Electric Space Science Center, Plasmadyne Corporation,
Cinncinati Testing Laboratory, North American Aviation Center,
Grumman Aircraft Engineering Corporation and Aerospace Corporation.
The results were compared with computed surface temperatures based
on radiation equilibrium in order to estimate the current level of reli-
ability of surface temperature predictions from stream conditions. A
similar comparison of the results obtained in the present program (6)
has been provided and is compared with the earlier results. -

B. Compilaticn of Experimental Surface Temperatures and
SEream Conaihons

Since the present study is concerned with a comparison of
CG/HW and HG/CW oxidation, correlation of the surface temperature
of models (specimens) exposed under HG/CW conditions with specific
stream characteristics is of paramount importance, In order to gain
some insight into the relationship between the surface temperature and
stagnation enthalpy, heat flux and pressure under subsonic and super-
sonic flow conditions, a review of available literature has been made.
The results are contained in Tables 1-16 which identifies the material,
Mach Number, stagnation pressure (Pg), enthalpy (i ), cold wall heat
flux (q w) and model configuration (D). As indicated, the diameter of
cylindrical samples are designated by asterisks. In addition, the ob-
served surface temperature, measured optically, is noted. Since the
assignment of ‘'observed temperature'' is not performed uniformly in
Tables 1-16, it is worthwhile to report the methods employed for each
set of measurements. No attempt will be made at present to correct
these ""observed temperatures'.

The ZrB,, HiB, and HfB,-5iC exposures reported under
Reference (7) in Tables 1 and 2 were performed at Avco/SSD. Bright-
ness temperatures were measured at A = 0. 65 microns and converted
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to "observed temperature' by using an emiitance value of 0.60. Exposure
times of five to thirty minutes were employed. ‘The high pressure ex-
posures of ZrB,, Boride Z, ZrO,, etc., shown under Reference (8)
in Tables 2-8 were performed in the Cornell Wave Superheater. The
former runs, as well as those in Tables 4-6 and 8 designated by Refer-
ence (11} (which ware aler 2azzicd Sul Lu ihe Wave Superheater), were
given 15 second exposure times. In these cases, the brightness tempera-
ture at A = 2.1 + 0.5 microns is reported. These temperatures represent
s obae

=2,1
mearn valucs sbserved during exposure,

G

The graphite ar.i ' ~ugsten exposures in Tables 7, 9, 12 and 13
denoted by Reference (10) were performed at Avco/SSD,. These tests were
of 60 to 120 seconds duration. Total emittance values were measured with
an Eppley thermopile. In addition, brightness temperatures were meagured
at A = 0,65 microns and converted to surface temperature by assurning
thai the emittance at A = 0.65 microns is equal to the total emittance.

The results reported in Table 2 for tantalum (9) were obtained
during 50-150 second exposures using an optical pyrometer at X = 2.1 +
0.4 microns. Brighiness temperatures were converted to observed tem-
peratures by using an emittance of 0.45. The latter value was obtained
from the observation «f the melting point of TapOg at 3730 R. The HIC-
C (20) exposure time was 6 seconds., The temperature level of this CAL

Wave Superheater test was established by observation of incipient melting
of HfO, (Table 4).

The ATJ Graphite exposures denoted by Reference (12) were
performed in the General Electric tandem Gerdien and free jet [acilities
(Table 10). The RVA graphite and graphite composites designated by
Reference (13}, Tables 11 and 12 were similarly tested. Exposure time

was 60 to 1000 seconds and surface temperatures were measured with a
two color pyrometer.

sure times of 100-1200 scconds were employed testing
the JTA and ZrO materials shown in Tables 13 and 14 degignated by
Reference {16). The reported surface temperatures are optical brightness
temperature measured at A = 0.65p. The same situation holds for the sub-
sonic, one atmosphere exposures, shown in Tables 15 and 16 denoted by
Reference (18) except that 30-60 second exposures were performed for
the latter cases. Finally, the iridium coated graphite and JTA tests in
Table 14 designated by Reference (17) were exposed for 400-1200 seconds.
Temperatures were measured with a two color pyrometer,

C. Correlation of Resalts

Tables 1-16 provide a valuable empirical guide to estimating
surface termnperatures from specific stream conditions. However, it is
desirable to provide a means for comparing results contained in Tables
1-6 which are related (i.e., cases where a given material is exposed to
two slightly different stream conditions). In other terms, it would be
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useful to interpolate and extrapolate these in order to compare results
obtained in different facilities and to predict the anticipated tempera-

ture for any given exposure.

The simplest means of performing such a correlation is to
desurius Lie conditions 1or radiation equilibrium at the stagnation point
of the model on the assumption that the energy lost by radiation is equal
to the heat transferred to the model. On this basis,

oer? = n (i -i_ [T, P]) BTU/#t?sec (1)

where 0 = 0,47 x 10”12 BTU/ft2sec®R4, ¢ is the total hemispherical
emittance, he is the stagnation point heat transfer coefficient, iy [ T,Pe]
is the stagnation enthalpy, and iy, is the enthalpy of air at the wall (sur-
face) of the model and T®R is the wall temperature. Eq. 1 usually ignores
reactions at the model surface which give rise to significant evolution

or absorption of energy and is as a result but a crude approximation to
estimating the surface temperature which depends on a knowledge of h,.

If the cold wall heat flux, q.y, is defined as

Qow = Beie BTU/ft%sec (2)

then Eq. 1 becomes

ge T = e (1 - i, [T, P11 (3)

Eq. 3 describes the wall temperature, T°R as an explicit function of the
stream parameters, i,, Qqw, and the stagnation pressure Pg, as well
as the enthalpy of air at the wall iy, [ T, Pe] and the total hemispherical
emittance of the surface € ,

Numerical values of the enthalpy of air at the wall are given
in Table 17. Specification of ¢, q., io and Pg fixes the surface tem-
perature., Eq. 3 can be solved numerically by using the values of
iyl T, Pe] shown in Table 17. However, it is convenient to represent
igi T» Pe| by analytic functions in order to obtain algebraic solutions,
The following equations have been employed for this purpose:

iw[T, Pe] 2 (T/1000) (100+45 log Pe+(T/1000) (46-14 log P )) BTU/ib (4)

and




i, [T, P] = 33.9 (T/1000)2 (2.0 - 0.131ogP) BTU/1b (5)

The numerical values of iy, [ T, Pg] described by Eq. 4 and
Eq. 5 are compared with the established values of the enthalpy of air (21),
(10) in Table 17. In the temperature and pressure range of interest (i.2..
Z700°< T < 7200°R and +2 >1az P_> 23 D4, 4+ represents a reason-
ably good representation of iy] T, Pg] . Thus at pressures which are
equal to or greater than 0.1 atm the difference between i [ T. P.] and
Eq. 4 are less than 200 DTU/ib. At 0.01 atm, larger differences are
noted at 5400° and 6300°R. However, reference to Tables 1-16 shows
that under low pressure testing conditions i_ is generally in the 5000-
18,000 BTU/Ib range. Under these circumstances, an error of 400
BTU/Ib in i,[ T, Pg] is not serious.

Eq, 5 is a poorer representationof i [T,

el . However,
its sirnple quadratic form permits direct solution of 3

P
Eq. 3 as follows:

0.47¢ (T/1000)? = ag, (1-33.9 (1/1000)% (2.0-0.13 log P ) /1)

(6)
hence

4 S 2 _
(T/1000) +33.9q, (2.0-0.13 log P_) (0.47¢i ) (T/1000) -ch/o.47¢,o (7)

or

(T/1000)2 = -0.5b + 0,5 (b2-4c)}/2 @
where

b = 33.9q_, (2.0-0.13 log P,) (0.47¢ i)~} (9)
and

¢ = -ch/0.47¢ (10)

Eqs 6-10 can be employed to obtain a crude estimate of the
surface temperature at pressure equal to or less than 1 atm, At higher

pressures, temperatures computed to be greater than 5400°R will be
too low,

Eq. 3 has been employed to compute i, for fixed values of
qcw and T at various stagnation pressures and em?.tta.nce levela. These
calculations were performed by using the established values of i_[T,P,]

given by Reference (10). The results are contained in Figures l'to 15
and constitute exact solutions to Eq. 3,

9

-

PR TN S

JRNPSpE.  y




o0
)
A
|
d.
,
E’T

|
|

Reference to Figures 1 to 15 illustrate the expected effect
of the total emittance on surface temperature. Thkus, under stream
conditions corresponding to a cold wall hant flo 5£ 2005 BTG/ fi"sec,
a stagnation pressure of one atmosphere and a stagnation enthalpy of
10,000 BTU/Ib; a material having a total emittance of 0, 2 would reach
a surface temperature of 420098 {Figure §). Under the same condi-
tions, a material having an emittance of 1.v would reach a surface
temperature of only 4400°R (Figure 10). These curves also show that
with increaring stagnation enthalpy, the surface temperature is depend-
ent only on heat flux and emittance as implied by Eq. 3 for (ig/i )* zero.
However, when the hoat transfer coefficient is large, the temperature
depends upon the stagnation enthalpy. In other terms, even undex high
flux conditions, the surface temperature cannot exceed the gas tempera-
ture. Note that in all of the proceeding discusaions, heats of chemical
reaction at the surface are ignored. Naturally, such effects could re-
sult in generation of suyface temperatures which are in excess of stream
temperatures. The inflections present in the i,[ T] curves at log Pq =
-2.0 {Figures 11-15) result from the temperature dependence of the
enthalpy as indicated in Table 17,

Eq. 3 has been employed to compute the surface tempera-
ture for each of thn exposures shown in Tables 1-16 by employing the
representation of iy[ T, P] given by Eq. 4. These calculations are
performed on a computer using a Newton-Raphson technique to obtain
solutions. The resultant ratio of computed temperature to observed
temperature is contained in Tables 1-16. The ratio, T{CALC)/T{OBS),
is plotted as a function of cold wall heat flux, q.,,, stagnation enthalpy, .
ig, stagnation pressure, P,, Mach Number and observed temperature in .
Figures 16-20. Thess calculations have been performed using a total
hemispherical emittance of 0, 6 for all exposures in Tables 1-16 except
those in which emittance values were measured, In the latter cases,
the reported values were employed.

An alternate calculation of the '"Radiation Equilibrium' sur-
face temperatuxe can be performed which employs the Fay-Riddell
relation (22) to compute the heat transfer coefficient, h,. This proce-
dure is performed by setting

ZR'B d“e 1/2 (p"').,“m 1/2 (p"')w 1/10
1bs/tt%sec (11)
Letting
2 du
(2 ) =0 (12)

for convenience and noting that
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o+ s v

o - BUr-u Mz [, 1) (-1 M2+2)),

1
-1

vA > (13)
r+ ) M (2yM” - (7 - 1))
for Mach Numbers graatar than oma2, and
0% = 9 (14)
for Mach Number = 0, where y¥= C /Cv = 1.4 for an ideal gas, and M
is the Mach Number. Approximatﬁg
(or),, /(w710 < 4 (15)
yields
1 1
h, = 0,941/ ((ow),, 1, /2RB)/2 (16)
Eq. 16 can be evaluated by estimating the viscosity by (23,
24) the following:
b= 2.17x1078 T 1/2 lbs (force) sec {17)
ft
Setting P = pRT and R = 1724 £:2/sec2 °R and noting that
(T 'Tg) = 540.5 (y-1) M (18)
. 2 2
with M” = u, /YRT, yields
b, = 0.940"/ 2[1.o9x1o'3—2—172__‘1”‘;‘°"°e)‘°°)(7¢'n)1/ ZM{140. 50 1)M2)~1/2) 1/ 2(p, /)2
it "R
(19)
Alsgo for high Mach Numbers M>>1),Q = 1,11 and
h, = 0.99 (6.90 x 10"19) 1/2 (Pe/RB)”z Ibs (force) sec/ft>  (20)
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where P_ i8 in lbs (force)/ £t% and Ry is in feet, Thus

1/2

ho= 2.60 x 107° (P_/Rp)!/2 1bs (force) sec/st (21)

e
(lbs (force) = 32,2 lbs ﬁ/secz). Hence

/2

-4 1
h,= 8.37x 107 (P_/Rp)! /% 1be/ftPaec (22)

When the stagnation pressure is in atmospheres, (1 atm = 2117 1lbs (force)/ftz)

2

h_= 0.0386 (Pe/R.B)” Ibs/ft%sec (23)

e

Eq, 23 is a reduced Fay-Riddell relation applicable at high Mach Numbers,
The general relation given above in Eq. 19 is

1/2 2 2,-1,1/4 1/2
h, = 0.0245Q [M®(1+ 0.5 (y-1) MY 7] (Pe/R.._B)
lbslftzsec (24)

where P is in a?noghere and Ry in feet. If the quantity 0,0 450”2[1 +
0.5 (y-1) Mz)' ] 1/3 jq approximated by 0.0386/?1 + 0.17M"~*), which is
accurate to within 5% for M > 0,1, then Eq. 24 becornes

~1,-1 /2

h = 0.0386 (1 + 0.17M™ )} (P_/Rp) /2 Ibe/et?sec (25)

Substitution into Eq, 1 yields

2

get? = 0,0386 (1 + 0. 1M e Py R i [T, R ) (26)

where D is the diameter of the hemispherical cap in inches,
Eq. 26 has also been applied to compute the radiation equili-
brium temperature for all of the exposures in Tables 1-16 by employing

the description of iy[ T, Pe] afforded by Eq. 4, These calculations
were performed for flat faced cylinders by setting

D = 2.5 Diameter of Cylinder 27

12




in Eq, 26 in order to account for the difference in heat transfer between
hemispherical caps and flat faced cylinders, The stagnation point heat
flux to a flat faced cylinder having a diameter D, is equivalent to the
heat transfer to a hemisphere havmg an effective diameter, Dgff, equal
to fD.. The values of f noted in the literature are 2.1 (25), Z 5 (12)

and 2 9 (12). Tn additinn, tha followring numnsiical values vi § nave been
reported_'z 0(26), 3.2 (26). 3.3 (27) an.d3 08, 3.34 and 3,72 at Mach
Number 2.0, 3.0 and 4. 76, 1espect1vely (28). Thus it appears that
values of 2,80 < { < 3.72 have been employed for relating flat faced
cylinders to hemispheres. As indicated above, a value of 2.5 is cur-
rently being employed in the present calculations (Eq. 27). This varia-
tion may result from individual facility characteristics and measurement
techniques, For example, the value f = 2,0 (26) has a heat transfer
basis while f = 3.2 (26) has a pressure gradient basis, All of the remain-
ing values except 2. 'I_(ZS) were obtained experimentally,

The results of applying Eq. 26 contained in Tables 1-16 under
the heading ""Fay-Riddell" are displayed in Figure 21 which shows the
ratio T(CALC)/T(CBS) vs, the observed cold wall heat flux.

D. Discussion of Results

Examination of Tables 1-16 and Figures 16-21 shows the
wide divergence between observed and calculated temperatures, Al-
though it is presently impossible to define the causes of these discrepan-
cies, some of the possibilities are worthwhile noting. To begin with,
the exposure times for the tests under consideration are variable, Thus
the Avco-MeB2 and HfB2 + SiC; the Plasmadyne-ZrO2 and JTA; the
General Electric ATJ, RVA and JTA; and the Cincinnati Testing Labora-
tory JTA and Ir coated graphite exposures were of 100-1800 seconds
duration., The remaining tests were for 30-60 seconds with the excep-
tion of the CAL exposures which were limited to 15 seconds. Under these
conditions, it might be expected that radiation equilibrium is more
readily attained in the long time exposures (i.e., times greater than
100 seconds). Thus, the observed temperature in a short time exposure
would be lower than the calculated radiation equilibrium temperature.

A second major source of error is the measurement of
surface temperature., This depends upon the particular value of
spectral emissivity employed in correcting the observed brightness
(¢ = 1) to the true temperature. For the G.E. and CTL results, ob-
tained with a two color pyrometer, the error in assigning a true
surface temperature depends upon how well grey body conditions are
approximated, Although these temiperature measurement errors can
be significant, it is not likely that they are the prime source of the
present discrepancies in the T(CALC/OBS) ratios. A related source
of error is the value of total emittance used in computing the tempera-
ture in Eq, 3, AS indicated earlier, measured values have been employed
where available, Where no values are available, a mean value of 0. 6 has
been employed, If the true value of total emittance is 1,0, then the cal-
culated temperature will be too high by the one fourth root of (1/0.6) or
fourteen percent. Such corrections could improve the present results,
However, such changes waould not eliminate the current level of disagree-
ment between observed and calculated temperature,

13
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The relative sizes of the model and the arc are an additional S‘
variable which has not been considered in the analysis, Table 13 con- {
tains the results obtained during the exposure of silivide coated re- .\

- Em3 T b PR PO N S, S TR % U NN
feactame matal allaw f231, In thopo cxporimnints, W 53 diainusics was

about one inch and the model was a two inch square foil. The foil

radiated from both the front and back face, As a result, the ratio of g
T{CALC)/T{(OBS5) is much iarger than unity, These ratios are not |
included in Figures 16-21. ;

Comparison of the T(CALC)/T(OBS) values shown in Tables ‘r
1-16 for the "Cold Wall" and "Fay-Riddell'' Heat Transfer Coefficient !
computations indicate that in some cases substantial differences exist :
between these heat transfer coefficients. Thus, the ''Cold Wall" and ,
Y"Fay-Riddell" heat transfer coefficients differ markedly in the data i
generated at Avco and CTL, There is some evidence that this may be
due to turbulent test streams (29). On the other hand, the CAL,
General Electric, Aerospace Corp., Plasmadyne, North American and :
Grumman data show good correlation between the '"Cold Wall" and "Fay- ;
Riddell" values, Reference to Figure 21 shows that the ratio of T(CALC)/ :

. T(OBS) is poorer for the "Fay-Riddell" calculation than for the ""Cold Wall"

calculation.

As previously indicated, the present calculations ignore heat
liberated at the surface due to oxide formation or heat absorbed by the
surface in order to vaporize or melt the model material. Inclusion of
the former effects could raise the present values of T(CALC)/T(OBS)
while inclueion cf the latter would lower the current T(CALC)/T(OBS)
ratios. Although these effects can be substantial, they do not appear to
be the source of the current differences. Inclusion of the heats of com-
bustion would raise T(CALC) and further aggravate the T{CALC)/T(OBS)
ratios, Moreover, reference to Figure 20 shows that the largest devia-
tions from T(CALC)/T{(OBS) =1, occur below 5000°R whezre copious
vaporization of the materials under consideration is unlikely.

ThLe most important (and unfortunately the least tractable) -
aources of error are the reported values of the stagnation enthalpy and
cold wall heat flux. Nonuniform flux and enthalpy conditions in addition
to gas radiation losses and variation in the techniques employed for the
measurement of these quantities is probably the most important single
source of the deviation of T(CALC)/T(OBS) from unity in Figures 16-21.
Thus, comparison of theAvco (half-filled squares) and General Electric
(rimmed squares) results for ATJ graphite shows an extremely large
discrepancy. The Avco data yield values of T(CALC)/T(OBS) which fall
between 1,10 and 1, 18 based on observed '"Cold Wall" heat transfer
coefficients while the General Electric results for the same material
range from 1.13 to 2,05, It should be pointed out that the latter results
were obtained for long time exposures.

Apart from the General Electric data, values of T(CALC)/
(OBS) which differ from 1,0 + 0.2 are frequent in the Aerospace and CAL
exposures. As indicated earlier, these exposures were for short times
and the high values may be due to the fact that radiation equilibrium was
not established.

14
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E. Results Obtained during the Present Testing Program

In the course of the present nrog=ax, Losc lnan U arc

Flasina icsts were performed (6). Measurements of stagnation ¢nthalpy,
stagnation pressure, cold wall heat flux and brightness temperature

" were performed in each case, The lafer were converted to true tem-

perature by using the measured values of the emitta-ce for the candidate
materials (5) under oxidizing conditions, In addition, radiated heat flux
was also measured in these tests so that normal emittance, €p, could be
deduced (6). Table 18 summarizes the average values of ¢ )y and the

T(CALC)/'T(OBS) ratios for each of the materiale tested (6). The latter

ratio is computed on the basis of Eqs. 3 and 4 corresponding to radiation
equilibria.

Idezlly, if radiation equilibria were the dominant factors and
all measurements were accurate, these ratios should be unity. Although
there are departures, it is satisfying to note that the differences are
small compared to those obtained by considering the results of other
studies (i.e., Figures 16-21 and Tables 1-16). Reference to Table 18
shows that ratios of T(CALC)/T(OBS) are lower for cases where melting
is observed than for cases where a solid oxide (or coating) is present.
Moreover, Table 18 shows that large values of T(CALC)/T(OBS) are
charactexistic for some of the materials. The occurrence of ratios which
are larger than unity implies resistance to energy absorption by the
material, Thus, exposure of HfB) + SiC(A-4) and HfC + C(C-11) to
identical stream conditions (i.e., stagnation pressure, enthalpy and cold
wall heat flux) would result in an 11% lower surface temperature than that
reached by HiC + C(C-11), This conclusion would apply if stream condi-
tions were not sufficient to produce melting of HiBp + SiC(A-4). At lower
levels, KT-SiC(E-14), WSi2/W(G-18) and Sn-Al/Ta-10W(G-19), which
exhibit T(CALC)/T(OBS) ratios of 1.43, 1.56 and 1,41, respectively
demonstrate similar resistance to energy transfer. Although the origin
of this resistance is not clear at present, it is probably due to blocking
effects caused by evolution of gaseous oxides., These observations sug-
gest a method of ranking the behavior of the refractory materials which
differs from the customary recession vs, temperature curves, In
Section IV, an alternative method of presentation which corapares reces-
sion rate as a function of heat flux and enthalpy for the candidate materials
is considered. This method does not require a knowledge of the spectral

or the normal emittance and integrates the blocking effects characteristic
of each material,
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. SIMPLIFIED MODEL FOR CALCULATING THE OXIDATTON

B Vv APHIT H
A, Introduction and Summary

In the course of the present study, the oxidation of graphites
in air has been investigated experimentally over a range of conditions (4-
6) hetween 2500°R and 4500°R, at velociiies beiween i fi/ sec and Mach 3.2,
Additional studies (12), (13) have been performed. The succeeding volume
of this series (30) presents a complete discussion of the surface reaction
problem encountered in the oxidation of graphite, This discussion con-
siders the coupling of mass transport through the boundary layer with
reactions at the surface in detail (30), By contrast, the discussion pre-
sented below employs simplified models (7, 31-33) which provide an
explicit means for computing the rate of graphite recession as a function
of density, surface temperature, gas velocity, stagnation pressure and
sample radius. The results are compare% with observations covering a
range of density between 80 and 115 lbs/ft°, temperatures between 25009
and 6500 R, velocities between 1 ft/sec and Mach 8,0, stagnation pres-
sures between 0,007 and 1.0 atm and nose radii between 0,005 and 0. 07 ft,

B. Derivation of the Simplified Model for Graphite Oxidation

Comparison of the recession rates observed for graphite in
the present study at air flow rates between 1 ft/sec and 250 ft/sec {Figure
37 and pp 23-29 of reference 5) demonstrate that most (if not all) of the
graphite oxidation data previously determined (34, 35) is controlled by a
supply limit, Thus, for example, Eqs. 28 (Gulbransen et al, (34))
corresponds to a recession rate of -

Mm = 1.86x 10-6 Poo' 32 e-3600,R‘T gm/cmzsec (28)
2

where POZ is in torr and T is in °K, and

$ = 2.44x lO'ZPOO‘ 32 ,~3600/RT
2

mils/ min

for graphite with a density p=1,80 gma/cm3 or 112 1bs/t3, For air, Pc)z
= 160 , thus Eq. 28 yields a rate of 0. 0007 mils/secat 3000°R, This
compares with values near 0.1 mils/sec at a flow rate of 1 ft/sec and 1
mil/sec at 250 ft/sec observed in the current study (5, Figure 37), The
oxidation rates reported by Okada and Ikegawa (35) between 1800°R and 5400°R
under slow flow conditions at a pressure of 0,21 atm O, yield similar com-
parisons, Values corresponding to 0.02, 0,07 and 0. 10 mils/sec are
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reported (35) at temperatures of 2000 °R, 3000°R and 4000 °R, regpectively,
As indicated (5), transport of sufficient quantities of oxygen to the reacting

surface and a'Rnowledge of the oxygen partial pressure at the reacting sur-
face are regnired in ardar tn malka any mezsuramant mooninsfal The

e mma e -..-b..u-. H-Sok sl

tical studies along these lines are presented in reference (30) in order to
calculate concentration grad1ents present in the gaseous boundary layer
adjaccent to the reaction suiface, However, since the detaiis of this treat-
ment are quite complex it is instructive to consider the approximate treat-
ment described earlier (Eq. 15 p. 242, Reference (7)).

The correct plcture for the oxidation of graphite above 800 °c
(1472°F) is one of continually increasing rate with both temperature and
oxygen pressure according to the Arrhenius relationship:

(29)
From 800° to 2065°C (14729-3750°F) z =0.32-0.38 and E = 3600-4200
cal/mol based on results of Gulbransen (34) and this study on Speer 710
and RVA graphites (5). Although the activation energies observed in the
present study (5) are compara.ble to those reported by Gulbransen et al.,
the rates are much hi gher in the present investigation. Thus, for PO,
150 torr, at T = 1700 Eq. 28 yields a rate of about 0. 04 mﬂ.s/mmute.
The present study indicates 60 mils/minute at 250 fps. Eq, 28
converts to
m = 3.16 x 107° pQ 32 e 3600/RT 1 i eilsec (30)
2
where Po is in atmospheres and T is in °K, and
2
§ = 3.39 x1073 pO;32 ¢"3600/RT 14y gec (31)

2

for graphite with a density p =1.80 gms/cm3 or 112 1bs/ft3, These reac-
tion kinetic equations are altered (7) to reflect diffusion control (31) yielding

= k(Cq M/M

R (l-m/mD)ze'El RT 1pe/ t%sec (32)
2,¢e 2

where P, is t! o stagnation pressure and Coz eis the mauas fraction of
oxygen at the edge of the boundary layer, ’

If one considers the reaction

C + 1/202 + 2N, - CO +2N, (33)
as dominant, then M =28.5, MQ, =32 and 002 e = 0.21. In addition (7,
32)
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v oo o= 112 .2
i = G, GUO lrelnB)” ibs/1t™sec (34)

Thus, Fq, 32 describes the oxidation of graphite in terms
of an Arrhenius term (ke -E/ RT) and a pressure correction term (l-th/m
which is based on a diffusion limit mp given by Eq. 34. In other terms,
the (1-m/mp) coefficient can be considered as a pressure correction which
relates the axygen concentration at the edge of the boundary layer to that at
the graphite surface. Divergent values have been reported for the Arrhenius
constants k and E(5), Part of the difficulty undoubtedly arises from the fact
that CO, is the dominant product gas of graphite oxidation at low temperature
while C% dominates at high temperature (36). In contrast to the values k =
3.16 x 10~5 and E = 3600 implied by Eq. 30, Scala and Gilbert (32) have pro-
posed k = 6.729 x 108 and E = 44, 000 for "'fast kinetics" and k = 2,473 x 10%
and E = 42, 300 for "slow kinetics', The current results indicate that lower
values of the activation energy may be more appropriate (5).

As indicated below the results of the present study (5, 30) have
been examined in order to obtain the most appropriate values of k and Ei, To
begin with, Eq. 34 was re-examined in order to allow for air flow rate ef-
fects at subsonic velocities since the diffusion limited rate for carbon re-
moval, my-), was originally approximated by (7)

1/2

e = AP /Rp) 4Gy (35)

where Cy is the mass fraction of carbon in the oxidation reaction, Since
the average molecular weight in Eq, 33 is 25,8 (with Mg, = 32) then C

1/7. The ccefficient " A" was estimated by analogy with the Fay-RiddeIﬁ
relation (2_2_, 27

q = 0,042 (PelR.B)” 2 (5,-1,) (36)

where the enthalpy difference (i,-iy) is the analog ~{ Cg in the mass loss
relation., Thus, with A = 0,042, mp) is defined by i, 34. However, at

low velocities a Mach Number correction (of Eq. 25) is required and the
result yields (30)

g = 0.0072 (1 +0.17M7 )} (Pe/RB)llz Iba/ft2sec 37
with

m = 0,74 Pé” e-10: T30/RT  \ /62 cec (38)
2

for the reaction rate, then
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where R‘B is the body radius in feet, Since

5 (mils/sec) = {ibs/ft2aec) 12000/p (lbs/gt3)

{40)
Hence
, aifs o.o116p88L/2p;1/2 113
S = 4920p Pe exp{-9720/T) [ 1~ T
{1+0.17M )
mils/sec (41)
for thg carbon recession rate in air, where p is the density of graphite in
lbg/ft and T is in °R

« The activation energy and pre-exponential factor

in Eq, 38 were evaluated by employing the form of Eq. 4] and the data in
Table 19 in order to obtain the best fit.

The experimental results shown in Table 19 include resuits
for ATJ, RVA(B-5), PT0178(B-9) and Paco Graphite (B-10). The calcula-
tions refer to flat faced cylinders (Rp = 2.5 R.) exposed during the present
study by R. A. Tanzilli {13), and by Metzger et al. (12). Exposures per-

formed in the current atudy are designated by run numbers {6). Tanzilli's

exposures of PT0178(B -9) are designated by B9-Gel-18 in le 19, The
exposures of ATJ graphite by Metzger et al, are denoted by MED. In
addition to theae arc plasma exposures, calculations were performed for
serveral high velocity CG/HW tests conducted on RVA{B-5) (5). Exposure
B5-L2, B5-L3 and B5-14 wore taken to represent the results contained in
Figure 45 of (5) at 200 ft/sec. Examination of the samples after exposure
indicates a nose radius equal to one sixteenth of an inch as shown in Figure
44 of (5), hence Rp = 62 mile or 0,0052 ft. The data and calculations
cover femperatures between 2300° and 6500°R, Thus, it is posaible that
some of the high temperature points (T > 60009R) reflect recession via
diffugion limited vaporization where the observed values would be ex-
pected to exceed Eq. 41 since vaporization becomes a significant factor

in the recession rate above 6000YR at one atmosphere. The preaent data
cover the pressure range between 0.007 and 1 atinosphere and represent
RVA(B-5), PT0179(B-9) and Poco{B-10) graphite, Moreover, the results
include data generated in the HG/CW Avco Model 500 and ROVERS facilities

{3) and the General Electric Tandem Gerdien Arc as well az the Lockheed
M/S Co., CG/HW facility (2).
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In addition, it should be pointed out that an independent

experimental arc plasma study by Sallis et al. (37) between 2500° and
ENQNOD ot staonation nreamuras hatween 0.1 and 9 atmospheres vields

a pre-exponential of 3,0 and an activation energy of 15,500 cal/mole

as compared with the current results of 0.74 and 10,730 cal/mole shown
in Eq, 28. In addition, Sallis et al, suggest that the cxponent of the

oxygen pressure is 0,4 rather than the value of 0.333 indicated by Eq, 38.

Eq. 41 has been employed to generate Figurea 22-26,
which compare with the observed and computed results of graphite
oxidation at low velocities., Figure 22 shows excellent agreement for
RVA(B-5) at 3310°R (Figure 37 of reference 5), while Figure 23
shows qualitative agreement (sce Figure 45 of reference 5). While it
is apparent that Eq, 41 provides an excellent descriptionfor the oxida-
tion kinetics of graphite over a very wide range of conditions shown in
Table 19, it is of interest to consider the results of a different kind of
experiment relative to the predictions of Eq. 41.

Blyholder and Eyring (38) have measured the oxidation of
graphite in flowing oxygen at 800°K. The oxygen pressure employed waa
26 microns of mercury while the flow rate was 1000 cm/sec. The sam-
ples employed in this experiment were hollow cylinders of carbon having
a density of 1.3 gms/cm3 (81 lbs/t3) which were 1/4 inch in diameter
with a one millimeter wall thickness, The samples were cut in half
parallel to their longitudinal axes prior to exposure. Under these condi-
tions, the oxidation rate of carbon (as measured by formation of CO)
corresponded to 16 x 1015 molerzules of CO/cmZsec. This corresponds
to 3.2 x 10-% gms of carbon/ecm*“sec. In order to apply Eq. 41 to compute
the rate of carbon oxidation for comparison witk this result is is necessary
to estimate the value of the term within the braces in Eq. 41 first, Since
the flow rate was 1000 cm/sec or about 33 ft/ sec, M is approximately 0.03.
The corresponding value of P, is equal to 3.4 x 10-5 atm. (26p of Hg) mul-
tiplied by (1.00/0.21) or 160 x 10-6 atm, Estimating Rp = 2.5 R¢ leads
to Rp = 0.026 ft, Thus, Eq. 41 becomes

1/3

§ = 3.85x10°2 (1-808) /3 mils/sec (42)

or§ =3.4x10°2 mils/sec =8.6 x 10"¢ cm/sec = 11,2 x 107® gms/c 25ec,
This value is in good agreement with the observed value of 3,2 x 10~6 gm/
cm“sec in view of the estimates required for Rp and M, Moreover, this
experiment was performed far from the range of conditions employed to

fix the pre-exponential and activation energy in Eq. 38,

C. Comparison of the Scala-Gilbert and John-Schick Models
for Graphite Ablation

John and Schick (33) have developed a theory for describing
the diffusion controlled ablation of graphite which defines the linear reces-
sion rate, S(mils/sec), of graphite as follows:
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where p is the density of the graphite (Ibs/ft3), io(BTU/1b) is the stagna-
tion enthalpy, iw(BTU/Ib) is the enthalpy at the wall, Mo, = 32 and Mg =
12 are the molecular weighta of oxygen and carbon, Cg, = 0.21 is the

mass fraction of oxygen in air, n is a blowing factor, and qyy is the hot
wall heat flux. If we sst m =0, 67, which is the usuval value, and

Qow Iaw
{e (re - {w)
Then Eq, 43 becomes
. - 1 - 1
S = 12,0000™" (q.,/1,)7"" mils/sec
or
-1 2
th =h(7) lbs/ ft°sec
where heil the heat transfer coefficient. Setting
hy = 0,042 (P_/Ry)'/2
based on the Fay-Riddell relation at high Mach Numbers yields

h o= o.ooe.(pe/n.a)”" 1bo/ft2sec

Eq. 48 is identical to the result obtained by Scala and Gilbert (32) in the
diffusion limited range. Thus, it is apparent that

(John-Schick Model) + (Fay-Riddell Model) = (Scala-Gilbert Model)
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Iv. INFLUENCE OF FLUX-ENTHALPY AND ALTITUDE-VELOCITY

-

Figures 1-8 of reference(6)describe the 30 minute recession ox
oxidation depths observed for the candidate matariala in NN /oW oo
plaama tests and in CG/HW furnace tests as a function of surface tempera-
ture. In the former case, the surface temperature is a tesult of the
interaction of the material with the strozma. Thus, while comparison
of a given material in the CG/XW and HG/CW cases based upon results
at a given temperature is quite legitimate, evaluation of various materials
in HG/CW tests on solely a temperature basis is not complete. As indi-
cated earlier (6) factors such as emittance, oxidation products and surface
characteristics can lead to situations where identical stream conditions
produce a variely of surface teamperatures on different materials even
after long exposure times. In order to consider an alternative inethod for
comparison of the oxidation characteristics and to xelate the HG/CW tests
to flight parameters, an additional description can be employed,

Figure 27 shows the stegnation pressure as a function of altitude
and velocity. In addition, stagnation heat flux to a one inch sphure described
as a function of altitude and velocity is displayod. In essence, these curves
provide a means for relating the HG/CW arc plasma tests to flight trajectory
conditions, The relations are presonted for the case of a one inch radius
sphere, Since the heat flux is proportional to R~1/2, the heat flux to a 4
inch sphere would be one hilf of the values skown on tho ordinate of Figure
27, while the heat flux to a 1/4 inch sphore would be twice thoso shown in
Figure 27, The curves relating stagnation pressure, P,, altitude, A, and
velocity, V, in Figure 27 are the results of complax equations @_?_-‘4;_1_).
However, between 50 Kilo feet und 250 Kilo feet, these curves can be
represonted simply by Eq. LY H

P, = V2 + (a/216% 1074754 oy (50)

where P, is the stagnation pressure behind a normal shock in atmospheres,
V is the velocity iu kilo foet/sc« and A is the altitude in kilo feot. The stag-
nation enthalpy, i,, is approxiraately

1, = 20V BTU/ID (51)

Eqs. 50 and 51 wheu coupled with the Fay-Riddell relation for a hemisphere

q = 0,042 10(90/35)” 2 prU/t#t?sec (52)
where R, is the body radius in foet yiclds

a = 2.9v° 1+ (a/216%1 /2R ~1/2)0-A/108 53

whore RB is the body mdiue in inches.
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Thus, Figure 27, or the approximations afforded by Eqs. 50-53
permit direct conversion from altitude-velocity space to flux-enthalpy
space for a hemisphere, As i.dicated above, the behavior of the ra-
fractory materials of intorsst Guder 3G/ GW conditions simulating high
velocity atmosphere flight is presented in Figures 1-8 of reference 6.

The latter show material recession as a function of stagnaticn pressure
and surfacc teraperature, In this case, the surface temperature results
from a combination of q, i, and material reactions with the stream, The
relations betweer q, iy, P, and surface temperature (for radiation equili-
brium) is illustrated in Figures 1 to 15. Calculations of thia type have
been peri rmed for each HG/CW exposure (6). Although reasonable agree-
ment of compuied T [ i,q,P] with observed surface temperature has been
encountered, some systematic differences have been noted as shown in
Table 18. Specifically, SiC and SiC bearing composites reach lower
surface temperatures for given i,, q and Pg conditions than do the other
materials considered, Similar behavior is noted for WSiz/W and SnAl/Ta-
10W under conditions where the coatings do not fail.

An alternative method for describing the performance of these re-
fractory materials is illustrated in Figures 28-36. These figures show
heat flux as the ordinate and stagnation enthalpy as the abscissa. In
addition, velocity as related to stagnation enthalpy by Eq. 51 is shown
as the abscissa, Moreover, the relationship for a one inch radius sphere
zt 150 kilo feet ia the ordinate. Thus, for a velocity of 16 kft/sec at an
altitude of 150 kft, the stagnation enthalpy would be approximately 5100
BTU/ib and the stagnation heat flux to a one inch radius sphere would be
about 600 BTU/ft“sec, If the body radius were 4", the heat flux would be
300 BTU/ftsec (located by dropping down to 300 on the inner ordinate
scale). Conyersely, i/ the body radius were 1/4', the heat flux would be
1200 BTU/ft“sec (located by moving up to 1200 on the inner ordinate scale),
Thus, the double set of ordinate and abscissa scales permit direct trans-
lation of velocity and body radius to flux altitudes, Eq. 53 has been em-
ployed to construct the inserted curve shown on each graph which shows
the ratio of qf Altitude] / of 15C kft] as a function of altitude. This ratio is
0,27, 0.48, 1,00, 2,46 and 6.85 at 250, 200, 150, 100 and 50 kft,
respectively, Thus, at a velocity of 16 kft/sec and 250 kft altitude, the
heat flux to a one inch sphere would be 600 x 0, 27 or 162 BTU/ft2sec,
Under these conditions a 4" radius would experience a heat flux of 81
BTU/ft2sec while a 1/4" radius sphere would be exposed to a heat flux
of 324 BTU/ft%sec. Similarly at an altitude of 50 kft, the Joat flux to a
one inch radius sphere would be 2.46 x 600 = 1476 BTU/it"sec and the
flux to a 4" and 1/4" sphere would be 738 and 2952 BTU/ fi2sec, respectively,

Thus, Figures 28-36 show heat flux and enthalpy for any velocity,
altitude and body radius. Figuare 28 shows the recession rates cbserved
for hafnium diboride at stagnation pressures of one atmosphere {(circles)
and 0,01-0.1 atmospheres (8squares). Recession rates which are less than
0.1 mils/sec, between 0.1 and 1 mil/sec and more than one mil/ sec are
indicated by open, half-filled and filled poiuts, respectively. Recession
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rates are plotted at flux and enthalpy co-ordinates for exposures given
in reference 6. At pregent, sufficient data are not available to con-
struct boundaries representing constant recession levels over the entire
flux-enthalpy space. To bridge the gap, 1.0 mil/sec boundaries are
approximated at each pressure by temperature levels obtained from
Figures 1-15, Figure 36 summarizes all of the results for a 1 mil/ sec
boundary-at one atmosphere,

The hyperholic curves for all of the materials except graphites
and tungsten, define the flux-enthalpy (or velocity-altitude-body radius)
conditions where the recession rate exceeds 1 mil/sec, Flux-enthalpy
conditions below and to the left of these boundaries result in recession
rates which are less than 1 mil/sec. Flux-enthalpy conditions above and
to the right of these boundaries yield recession rates in excess of 1 mil/
sec. In the case of graphites and tungsten, the linear boundaries (based
on diffusion limits) are shown for 0.5, 1,0, 2.0 and 4.0 mils/sec. Flux-
enthalpy conditions lying below and to the right of these boundaries will
result in lower recession rates, while those lying above ard to the left
will result in higher rates.,, The computed rates for graphite and tungsten
are calculated on the basis of Reference 31 and Eq. 45.

Although Figure 36 is based onalimited number of testa, it provides a
clear indication of the superiority of 5iC and SiC composites, Figure 1
of reference 6 suggests that ZrB,(A-3) exhibits recession rates below
1 mil/sec at Burface temperatures up to 5000°F, Figure 5 of Reference
6 shows that KT-SiC(E -14) exnibits rates below 1 mil/sec or less below
Z000°F. However, Table 18 as well as Figure 36 indicate that the flux-
enthalpy conditions which produce 5000°F surface temperature (and a 1
mil/sec recession rate) for ZrBy(A-3) will yield a surface temperature of
only 4000°F (and & comparable recession rate) for KT-SiC(E-14), ©Of
course, relative mechanical properties, thermal shock resistance, denaity
and other factors may impose additional criteria for comparison., Never-
theless, I'igure 36 presents a direct ranking of oxidation behavior as a
function of flight conditions for extended periods of time at the stagnation
point, The position of these curves could vary with stagnation pressure.
There are several other inversions of rank relative to the CG/HW and HG/
CW tests using temperature as a base, Figures 42 and 45 of reference 6
show that HfB, + SIC(A-4) and (A-7) exhibit 1 mil/sec recession rates af’
lower temperatures than HfC + C(C-11). Nevertheleas, for given stream
conditions, the latter reaches surface temperatures which are 20% higher
than the former (see Table 18) and ranks lower in Figure 36, Similarly,
8i0z + W(H-22) and Si/RVC(B-~8) which degrade rapidly at 4000°F and
31000F respe~tively in CG/HW furnace tests rank high on the basis of
Figure 36, The relative behavior of Si/RVC(B-8) and Ir/C(I-24) is also
fllustrated graphically in Figure 36, Reference to Figures 5 and 8 of
reference 6 rhows that 5i/RVC(B-8) provides protection for graph..e at
surface temperatures up to 3700°F in the HG/CW arc plasma tests while
Ir/C{I~24) is protective up to surface temperatures of 4200°F, However,
gince the latter Las an emittance of 0,3 and T(CALC)/T(OBS) =1.16
(Table 18) while the former has an emittance of 0,70 and T(CALC)/T(OBS)=
1,43, Si/R.VA(B-S) exhibits a much greater resistance to heat flux and
enthalpy than does Ir/C(1-24), Addition of HfOp to the Ir/C(I-24) coating
system improves the performance of this material by increasing its
emittance (6).
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V. UTILIZATION OF THE FLUX-ENTHALPY VS. ALTITUDE-
VELOCITY CORRELATION TO SCREEN MATERIALS FOR_
BPETIFIED TRAJECTORIES

In order to illmatrats ke Gicans by which Figure 36 can be employed
to predict the behavior of a candidate refractory material for a specific

trajectory it is worthwhile to consider the Air Force Flight Dynamics Laboratory

FDI -7MC Lifting reeairy vehicle's maximum cross range characteristics.
This vehicle is designed for a Lift/Drag ratio between 2.5 and 3.0.

Table 20 provides the altitude and velocity as a function of time,
These data were employed to calculate stagnation enthalpy, pressure and
heat flux based on Eqs, 50-53 for a 3" nose radius. The results are shown
in Table 20 and in Figures 37-40. These figures indicate that HfBp+5iC
(A-4) and (A-7), H:EBz(A-Z), ZrB2+5iC(A-8) and HIC+C(C~11) could survive
the entire trajectory in this configuration, In addition, ZrBz(A-3) and
ZrBtSiC+C(A-10) might algo survive, Comparison of the flux-enthalpy
values for this trajectory with the results of arc plasma tests shows that
HfBp(A-2), ZrBp(A-3), HiBp+SiC(A~4) and (A-7), ZrB,+SiC(A=~8), and
ZrBa+5iC+C(A-10) survived tests which are equivalent to the FDL-7TMC
with very small recessions, Due to the low temperature oxidation of
HEC+C(C-11), this material might be limited for reuse (6). The borides
and boride composites would not suffer from this limitalon. A number of
long-time cyclic exposures of diboride composites have been performed (6)
in the Model 500 and ROVERS facilities to evaluate reuse capabilities for
trajectories typified by FDL~-7MC, The results provide a striking illus-

tration of the reuse capability of these materials for lifting reentry applica-
tionsu

Sample HiB, 1+20%SiC(A-7)-28R was exposed for thirteen cycles at
0.07 atm stagnation pressure, a sgagnation enthalpy of 10,200 BTU/b and
a cold wall heat flux of 495 BTU/ft“sec. Each cycle was about 1800 seconds
long with a total exposure time of 22,500 seconds. The surface temperature
increased from one cycle to the next atarting at 3500°R and holding near
5300°R for cycles 5 through 13, Total material recession was 15 mils after
this extremely long exposure, Sample ZrB2, 1+20%SiC(A-8)-15M was exposed
for four cycles at 1,0 atm stagnation pressure, a stagnation enthalpy of 5000
BTU/1b and a cold wall heat flux of 380 B'I‘U/fthsec. Each cycle was 1800
seconds long, total e.:époaure time was 7200 seconds. The surface tempera=~
tures were near 5000°R, Total material recession was 26 mils, Finally,
sample ZrB24SiC+C(A-10)~26R was exposed at 0,236 atmospheres stagna-
tion pressure, a stagnation enthalpy of 7700 BTU/1b and a cold wall heat flux
of 455 BTU/ftzsec. This test covered eleven cycles of approximitely 1800
seconds duration for a total exposure time of 18,900 seconds, Surface

temperature held near 5100°R after the first cycle. Total material reces-
sion was 83 mils,

Theoe resulis illustrate the reuse capability of boride compositea for
lifting reentry application, since they exceed the range of conditions and
FDL-7MC, This capability is unrivaled by any other materials system.
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VI, CALCULATION OF THE FLUX-ENTHALPY BOUNDARIES FOR
RECESSION RATES OF 1 MIL7SETC VIA MELTIN

[

Figures 28-40 display the recession rates observed in arc plasma
toeste 2z o Suncticn of lival Jux and stagnation enthalpy, This representa-
tion indicates the locus of heat flux, q, and stagnation enthalpies, i.e.,
which define the region where recession rates exceed 1 mil/sec for
refraciory materials, This value was arbitrarily chosen in order to
illustrate a means by which the flux-enthalpy representation can be em-
ployed. The 1 mil/sec boundaries can be identified by collecting suf-
ficient data to cover the q-i, space completely. Since sufficient data
points are not available to do this experimentally, the procedure em-
ployed in Figures 28-35 is to associate the 1 mil/sec boundary for
condensed oxide forming refractory materials with a specific temperature.
This procedure is quite arbitrary,

An alternative method is to consider the 1 mil/sec rate as being
characteristic of melting, Under these conditions, the convective heat
flux can be considered as a source of the radiative losses and the heat of
melting. This heat balance is defined by Eq., 54 as follows:

h,(i,-i, [T, P]) = Ce (T/1000)* + (12,0007} pAHS BTU/#P8ec (54)
where the heat transfer coefficient, he' is

By = 9y /1q (55)

The enthalpy of air at the wall, i, [T,P], is given by the following expres-
sion from Eq. (4),

1,7, F] = (T/1000) {100 + 45 1og P+ (T/1000) (46-1410g F)) BTU/1b  (56)

a;xd 4.y and i, are the cold wall heat flux and stagnation enthalpy, respec-
tively,

In Eq. 54, 0=0,47 BTU/ft2sec°R% is Boltzmann's constant, TR
is the melting point of the refractory material, p is the density in lbs/ ft3,
« is the total normal emittance, AHg is the latent beat of melting in BTU/1b
and $ is the recession rate in mils/sec. Since there is not available
experimental data for AH; estimates have been made as indicated in
Table 21, Thus, Eq, 54 fu similar to the radiation equilibrium surface
temperature calculation except that an additional heat loas (12 ,OOO'IpAHtS)
has been included, Rearrangement yields:
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¢ . /i (-1 [T, P]) - 0, (T/1000)%
(12,000)" % PAH,

mila/sec a ) {57)

Eq. 57 defines the recession rate for melting under conditions

where the convective heat fluv ia balanesd by the iadiaied heas fiux and
the heat flux required to melt the material at a fixed recession rate,

Table 21 contains values of T, e, AH,: and p for the candidate materials.
The latent heat of fuzion has been esiimated for most of these materials
since virtually no measurements are available. Figures 41-44 show -
sample reaults obtained for HiB, ;(A-2), ZrBy(A-3), HfC+C(C-11) and
Z4rC+ C(C-12) by setting S = 1,3%nd 10 mils/sec in Eq, 56, The location

and form of these curves ie in qualitative agreement with the results dig-
played in Figures 28-35,
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Vi1, CALCULATION OF TEMPERATURE DISTRIBUTION THROUGH A
COMPOSITE CYLINDER UNDER STEADY STATE CCNDITIONS
ALLOWING FTOR 5ID

The calculation of surface temperature from stream conditions based
on radiation equilibrium described by- Equat:mns (1 4) in Section VII has been
performad for ol toztz, Tho reculis wiilch are given in Lable 138 show
that reasonable agreement can be obtained in most cases to within 10 or 15%.
In most cases, the calculated temperature is too high, At present, the re-
sulis indicate that the over estimated values are due to a reduction in heat
transfer coefficient due to vaporizing oxidation products, This conclusion
is based on the fact that materiala containing SiC, SiO, and other vapor
products (i, e, Sn~Al/Ta=10W(G=~19) yield higher values of T(CALC)/T(OBS)
as seen in Table 18, The following calculation deals with the problem of
side losses via radiation and axial temperature gradients in the arc plasma
test cylinders,

Representation of the steady state temperature distribution through a
right circular cylinder of radius R, length L, and a coating which has a thick=-
ness I as shown below can be defined on the basis of a convective heat input
and radiation losses from the front and sides according to the model shown
above, In this description, the thermal conductivity of the coating and sub=-
strate are k, and k_, respectively.

ke ki

Heat Lost Via Radiation

!

TeT

74__.—-”—‘_:1!‘____..“ Heat Lo3s

kakg via Conduction

TaT¢

4_-——T'T'
iwlTt Pe] 1‘ T X ‘>'
Rso x] xal
The total heat balance requires that
(/i) (1,8 (Te P)) = O¢ TH(1 + (2L/R) (Fp + Fg)) BTU/fPsec  (58)

where q and i_ are the cold wall heat flux and stagnation enthalpy respectively,
and the enthalpy at the wall, iw' at a temperature T; and a stagnation pressure
P, is approximately (from Eq. (4)),

i, [TpP, ] =(T/1000) (100 + 45 log P_ + (T,/1000)(46-14 log P)) BTU/1b
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Evaluation of the temperature distributions along the length of the cylinder
are performed on the basis of the following assumptions,

(a) the gradient through the coating is linear for 0 <x <1

{b) the temperature distribution through the substrate is quadratic
for T < v T,

(c) heatlosses at x =L are negligible
(d there are no radial temperature gradients,

With these assumptions, the quantities Fp and Fg contained on the right
side of Eq.(58) are defined as follows
X,
i
Fp = j (T/T)* ax
F f
o

(60)

where X =x/L, %; = I/L and T is the temperature at any value of x. Similarly,
1.0
F, = (eqle) (T/T)? ax
S S f
i

(61)

where ¢g is the emittance of the substrate and ¢ is the emittance of the coating.
If the ratio T/T, is defined as T, then

T=1- (Ti-1) (®/%) for 0 < ¥ < % 2)

wheres Ti is equal to T/T;atx = I, and
= P ) - — -, o, W e - o— o
T = (l-x;) “ [T, + (T, = TYR(2-%)=Tyx; (2 = x;)] for X;< %< 1 63)

where Tt = T,/ Ty is the ratio of the back face temperature Ty to the front face
temperature Tf. atching of the conductive fluxes at the interface requires that

%
Ty/ Ty = Ty = [2RpR (1-%p)] "1 25, Ty R(1 %)) C Ry (1 -%y) J'T“ dx] (o)
o
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where k = kg/kg is the ratio of thermal conductivities of the coating and sub-
strate and Cg is defined by Eq.(65) as follows

3.2
CS = 2e¢ O'Tf.L /Rks (65)

L2 nd i4jperinit ovaluaiion uf T g since

i x;
Fp = ‘S\ oo = {0+ (T, - ngh* ax
(o] [»]
Fp = % [1+2(T, - 1) + 2(T,-)% + (T .-1)% + (1/5) (T.-1% (66)
F i i i i i ‘

Similarly, defining

-2

ag = [T, - T& (2-%)] (1-8)"2 anda, = (F,-T)a;! (1-x) (67)
yields
1,0
(n/:s)Fs = f a.g [1+a.4§(2-':'c)]4dx (68)
X
= agti.mes
- -
L e R By 4
+a2(-§-§ + 45:?[-%—213-*?4- -15?‘-21-21)
+a;‘;',(-!561 + Zx?[--s- 5’:?+ 3xi-4j)
N <21 1
a4(-3-+ 421[-3-:(:1-1])
+laeg )
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Eq. (43)can be employed to define the temperature gradient in the cylinder
at the front face

= =1
?ilﬂi (70)

L

Since all of the energy entering the cyiinder at its front face must be
radiated away, then

= 1-F 1
E R I > L = gk S T @ = k™! (Fp+Fy) (1)
= ) .

or

(Fp+ Fg) = (1-’r'i)‘1'<mics (72)
When ":':i =1 =0, i,8,, no coating is present, Eq, (62) ylelds

- -3%-) . 2(1-T) = CgFy {(73)
or

Fg = zu-‘i*'u)/cs (14)

The limiting case where I = L, = 0,indicating no radiation losses from the sides,
reducas Eq, (58) to

(@/ig) liy =4, [Tp P1) = O TZ‘ (75)

for radiation equilibrium from the front face, This result is identical to
Equations ] «4 of Section II,
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Solution of Eq. {58) for the general case where I and L. are not equal
to zero requires location by iteration of the proper value of T, which satis-
fies Eqs. (58), (64), (73), (68) and (72). This procedure is started by
employing the solution of Eq. (58) (based on 1= L = 0) for T, as a first
guess. Once this first guess is available, C_ is defmed by i'iq (65). These
initial vaiues of 'I‘ and C are emploved in coniunction with Eaa. (64). {66)
and (68) to search*for a vilue of T satzsfymg (72). The iteration procedure
is begun by substituting the resultant value of (F + F.) into Eq. (58) and solv-
ing for thec resultant error. The proccdure is rcpcat % by perturbing the ini-
tial T,, repeating the solution and obtaining the resultant error for the second
choice. Examination of these values of T, and the resultant errors, using a
Newton-Raphson method, permits the itération process to proceed to conver-
gence,

When I = 0 the procedure is the same except that Eq. (72) is replaced
by Eq. (64). In this case F_. is zero., A computer program has been developed
to perform these calculations.

Sample calculations are shown in Table 22 for arc plasma tests ZrB
(A-3)-2MC which exgibited a front face temperature of 4930°R and an internfl
temperature of 3400 R at a distance of 100 mils from the front face (6). The
effects of the internal pyrometer hole was considered theoretically and found
to be negu ible. Consequently, the present calculations are bascd on the total
length of 4%9 mils. The results illustrate the large temperature gradients
through the sample indicated in reference 6,

In order to gain some insight into the effects of length, I, radius, R,
coating thickness, I, and the thermophysical properties, ¢, ¢ ,, k. and 1< on
the temperature gradients, it is instructive to reconsider Equ txoa‘ (58). Sl
Equation 58, the calculation of T, reduces to the simple radiation equilibrium
case given by Equation 75 and chuations 1-4 of Section Il when L. is equal to
zero or when R is infinitely large compared to L, When thias is not the case,
the temperature gradients are controlled by the values of F., and Fg in
Equation 58. These quantities are in turn dependent on the Eelatcsd %alues of

and 'I‘ defined in Equations 62-64. The relation between T, and T, (Equa-
ti%m 64) pecifically involves the tharmophysical properties th*-ough é given
by Equation 65. The explicit correspondence between the radiation patameters
F.. and F and the thermophysical parameters I‘ T and C, are given by
Eduations 72 or 74, Figure 45 shows the vnriati cf’ specified by
Equation 64 for a representative case where k /kq & 0 ‘10 Fiéum 46 illus-
trates a portion of the coating contribution (F.)) to the radiation term in Equa«
tion 58 and its dependence on The total rEdiation parameter (F‘ S)
varies with T, as shown in I‘igd‘re 47. This dependence is illustrated £or the
case where IfL. 0,10 and k /o= 0,10 on the basis of Equations 66 and 69.
Solutions for T and (F a?e given by the indicated intersections using
Equation 72, 'lthue cagculaganu are carried out by the computer program
which then solves Equation 58. In the speclal case where I = 0 (no coating
%resem), vanishes and F_ as given by Equation 69 is solely dependent on

as shown in the figure based on Equation 74,
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The effect of the thermophysical properties and the radiation losses
on the surface temperature gradient within the material is evident from Equa-
tion 71. For small C, the temperature gradient is small, as may arise for
low surface temperat\§re, (T ,.), physically thin cylinders (L = 0), relatively
thin cylinders (L/R - 0), or’large thermal conductivity (k_) ait of any coating.
For large values of those parameters, C,, and thus the teﬁnperature gradient,
tend to be large. Relatively small thern1§1 conductivity of the coating (i.e.
Lok ,/X:S simall) sisu loads tu largur inermal gradients, Lastly, the nor-
mnli;c;.d Fadiation parameters, F_. and I, influence the gradient by partially
compensating for the C, effect, E‘igure §7 shows that small (FF_. + F_) is
associated with large Cg and vice versa. Physically, this impl?ea latger
gradients at the face lead to lesser radiation losses from the aft parts of the
cylinder due to the lesser temperatures then present.

Tables 23-28 summarize the results obtained by comparing the observed
internal temperatures (6) with calculated values based on Eqa, 58-75 for ZrB2+
SiC(A-8), ZrBp(A-3), HiB+SiC(A-7), RVA(B-5), ZrB+SiC+C(A-10), WSia2/W
(G-18) and Hf-Ta-Mo(I-23), These tables contain the measured front face
temperature Ty, the observed temperature at a distance, d mils from the front
face, T(d), and the cold wall heat flux, ¢, the stagnation enthalpy, iy, and the
stagnation pressure, Po. In addition, these tables show the radius, R, length,
L, and oxide coating thickness, I, The latter was equated te the conversion
depth for the oxide formers (6), For WSiz/W, I was equated to the WSi2 coat-
ing thickness and I=0 for RVA(B-5) graphite which ablates without coating
formation, Valucs of the emittance,¢g, taken from Table 18 as well as suit-
able values of the thermal conductivities of the thermal conductivity of the
coating ky and the substrate kg are also shown in Tables 23-28,

The computed results are displayed in termas of the »atio of calculated
front face temperature to observed front face temperature Ty (CALC)/T ¢ (OBS)
and the ratio of computed in depth temperature T 3(CALC) to computed front
face temperature T; (CALC), If the agreement is exact (e.g., Hf-Ta-Mo(I-23)~
43R in Table 28), tfw ratio of T (CALC)/T¢ |OBS) would be 1,00, In the exam-
ple Tg (CALC) is 4440°R va, 4530°R = '1;, (OBS), Similarly the measured
temperature at 120 mils is 3560°R ve, Ty (CALC)=3380°R, In this case, the
observed gradient is 960°R while the calculuted gradient is 1060°R. in 120 mils,

All of the runs shown in Tables 23-28 were performed on flat faced
cylinders except those designhated by a suffix H (hemisphere) or 8 (eylindrical
shroud with a 200 mil wall), Photographs of these models have been presented
(6). The shrouds and hemispherical caps did not alter the gradients obsoerved
for flat faced cylinders, Thus all of the calculations were baned on flat faced
cylinderu ignorinf the hemisphorical caps and the shrouds, Reference to Tables
23.28 indicate relatively good agreement betwaen calculation and observation,
in view of the simple model employed and the complexities of the axperiments,

The largest deviations occur at low surface temperatures (l,e., T; <
3300°R} for the materials which forra SIO2 as an oxidation product, Thus, in
cases where samples of H{B2+SiC(A-7), ZrBp+SiC(A-8), ZrB+SiC+C(A-10)
or WSi2/W(G-18) were exposed with shrouds or as large diamoeter hemisphoros
‘T (CALC) is considerably larger than T, (OBS), However, this difference is
smaller than obtained when T, is compuged on the bariu of radiation equilibrium
(6) (i, e., Bq. 75). The causé of this behavior is presently unknown (6), Refor-
énce to Tables 23-28 showa that the calculated and observed ratios ot"'I‘d/'I‘f
are in general agreement,
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TABLE 17

TEMPERATURE AND PRESSURE DEPENDENCE OF THE
ENTHALPY OF AIR (BTU/LB)*

3600

4500

.5400

6300

7200

8100

9000

*The sequence of values ir, Reference(21) Reference (10)
(Equation (4) ) and{Equation (5)),

ng‘P

X2 I L ol =2

704 704 704 704 704

707 707 709 709 709
(644) (625) (605) (585) (566)
(430) (462) (494) (526) (558)

968 968 968 971 980

980 980 981 983 991
(917) (937) (956) (975) (995)
(764) (821) (879) (936) (993)
1238 1244 1263 1318 1485
1274 1279 1295 1346 1497
(1220) (1300) (1382) (1462) (1543)
(1194) (1284) (1373) (1462) {1551)
1530 1574 1707 2055 2641
1596 1634 1750 2063 2630
(1551) (1716) (1881) (2046) (2211)
(1720) (1848) (1977) (2106) (2234)
1867 2053 2485 3060 3293
1967 2115 2489 3047 3341 .
(1911) (2183) (2456) (2727) (3600)
(2341) (2516) (2691) (2866) {3041)
2321 2746 3329 3596 3719
2416 2759 3301 3631 3789
(2301) (2703) (3104) (3506) (3908)
(3058) (3286) (3515) (3743) (3972)
2890 3495 3879 4073 4523
2943 3447 38717 4131 4585
(2720) (3274) (3828) (4382) (4936)
(3870) (4159) (4448) (4738) (5027)
3536 4086 4382 4913 6468
3515 4037 4412 4964 6469
(3168) (3897) (4626) (5354) (6084)
(4778) (5135) (5492) (5847) (6206)
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TABLE 19 (CONT)

-

COMPARISON OF CALCULATED AND OBSERVED RECESSION ;
RATES FOR RVA(B-5), PTOL78(B-9). POCOIR.10Y AND ATI CRATIITES ,

(FLAT FACE CYLINDERS)

!
S{CBs) Effective S(CALC) 11
Observed Radiue Calculated
Sample Recession P Mach Diameter R Recession S{OBS) j
No. Rate I e Density No. Initial/Final B Rate |
°R (atm) (1bs/ft’) (mils) ft. (mils/sec) ‘
B5-23M 0.878 3725 1.000 112 0.10 502/350 0,0443 1,275 0.689
B5-24M 0.992 4105 1,000 112 0.13 502/330 0,.0433 1,525 0.650
B5-25M 0.522 3420 1.000 112 . 0.15 503/400 0.0449 1,420 0.368
B5-26M 0,269 3035 1.000 112 0.15 503/380 0.0466 1.192 0,226
B5-27M 0.430 2995 1,000 112 0.15 502/340 0.0438 1,175 0.366
B5-31M 0.538 3285 1,000 112 0.10 501/350 0.0443 1,174 0.458
B5-32M 0.422 3475 1,000 112 0.10 502/405 0,0472 1.199 0.352 ) K
B5-16R 1.463 5855 0,218 112 3.20 739/620 0.0707 1.266 1.156 . f {
B5-28R  0.018 2165 0.005 112 3.20 503/500 0.0522 0.074 0.243
B5-29R  0.086 2780 0.008 112 3.20 504/490 0.0517 0.188 0.457
B5-30R  0.244 3465 0,011 112 3.20 502/470 0.0505 0,298 0.819
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CALCULATION OF FLUX-ENTHALPY CONDITIONS CORRESPONDING
TO THE TRAJECTORY FOR THE FDL-?MC HYPERSONIC RE-ENTRY

TABLE 20

VEHICLE UNDER MAXIMUM GROSS RANGE CONDITIONS

(R.B = 3')
Time Altitude Velocity ‘e q 1-Je
o

(sec) (kft) kft/ sec BTU/lb BTU/ft“sec (atm)

200 260 26 13500 210 0.03

400 200 25 12500 480 0.21

600 9o 23 16600 450 0.25

800 180 22 9700 480 0,34
1000 180 20 8000 360 0 28
1200 180 18 6500 260 0.23
1400 170 16 5100 210 0.24
1600 160 14 3900 170 0.28
1800 150 13 3400 170 0.36
2000 140 12 2900 160 0,43
2200 130 10 2000 110 0.45
2400 120 8 1300 70 0.42
2600 110 7 1000 60 0.48
2800 100 5 500 30 0.38
3000 80 3 200 10 0.30
3200 60 2 100 5 0.31

W/S = 53 lbs/ft?
W/C 8 = 312 Ibs/t2
60
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TABLE 21}
SUMMARY OF DATA USED IN THEORETICAL CALCULATIONS OF
RECESSION RATES AS A FUNCTION OF FLUX-ENTHALPY CONDITIONS {
o a N
Material TOR® € AHf‘ ' Density , gms ASf l
l — Code - [BTU/ML) il g. at, ) (callg. at° K)
} HIB, |(A-2) 6570 0,40 490 625 66.7 5.0 J
ZxB,(A-3) 6335 0,37 840 350 37.6 5.0
'HEB, +20v/ 0SiC
, (A-4) 5700 0,48 495 585 57.5 5.0
ﬁ Boride Z(A-5) 5300  0.55 705 355 37.5 5,0
HfB, ,(A-6) 6570 0,50 490 655 66.7 5.0 ;
HfB,+20v/ 0SiC
: (A-7) 5700 0,48 480 565 59.0 5,0
- ZrB,+20v/ 0SiC ‘
| (A-8) 5300  0.55 740 340 35,8 5,0
-? HB,+36v/08iC
(A-9) 5500  0.59 560 485 49.3 5,0
ZrBZ+SiC+C
(A-10) 5500 0,62 1150 280 28.7 6.0
HfC+C(C-11) 6210 0,55 730 565 59.5 7.0
2rC+C(C-12) 5725 0,45 1050 340 38,0 7.0
- JTA(D=13) 5000 0,57 2000 190 17.5 7.0
. JT0992(F-15) 5800 0,60 1400 290 28.8 1.0
' JT0981(F~16) 5170 0.5l 1880 195 19,2 7.0
. WSi, /W(G-18) 6576  0.28 70 1200  184,0 2,0
_ Sn-AL/Ta-W(G-19) 5890  0.46 65 1055 181,33 2,0
Hf-Ta-Mo(I-23) 4320 0,54 50 840  179.0 2.0
Ir/C(I-24) 4950 0,30 50 1400  192,0 2.0
; % Estimated values,
. %k Calculated value, AHf ='TAS£.




TABLE 22

CALCULATION OF TEMPERATURE GRADIENTS THROUGH
ARC PLASMA TEST SAMPLE ZrB,(A-3)-2MC

, e A -
. e -

——

lnput Values Observed Values
a = 365 BTU/#%sec T, = 4930°R
ie = 3230 BTU/lb T = 3400°R at x = 101 mils
P, = 1,060 atm
€g = € = 0,47
R = 0,020 £, (246 mils)
L = 0,035 ft, (429 mils)
I = 0.0011 ft. (14 mils)
kp = 0.0001 BTU/f sec®R for oxide
kg = 0.0120 BTU/ftsec’R for boride
X Computed Temperature x Computed Temperature
inils °r mils °R
0.0 4633 231 3325
21,0 3424 273 3314
42,0 3411 315 3306
63.0 3398 357 3300
105,0 3376 399 3297
126.0 3366 420 3297
168.0 3347
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Materials.
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